
NRL Report 7777

AN/UYK-17(XB-1)(V)
Signal Processing Element

Microprogramming Support Software

TOMLINSON G. RAUSCHER, JOHN D. ROBERTS, JR.,

AND W. DAVID ELLIOTT

Information Processing Systems Branch

Communications Sciences Division

October 10, 1975

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

REPORTS IN THIS SERIES

"Microprogrammed Control Unit Programming Reference Manual," J. D. Roberts, Jr., NRL Report 7476,
Aug. 15, 1972

"Signal Processing Element Users' Reference Manual," W. R. Smith, and J. P. Ihnat, NRL Report 7488,
Sept. 5, 1972

"Signal Processing Element Functional Description, Part 1, Microprogrammed Control Unit, Buffer
Store, and Storage Control Unit," J. P. Ihnat, W. R. Smith, J. D. Roberts, Jr., Y. S. Wu, and B. Wald,
NRL Report 7490, Sept. 12, 1972

"Signal Processing Element Functional Description, Part 2, Signal Processing Arithmetic Unit," W. R.
Smith and H. H. Smith, NRL Memorandum Report 2522, Oct. 1972

"On the Feasibility of Emulating the AN/UYK-7 Computer on the AADC Signal Processing Element,"
T. G. Rauscher, NRL Memorandum Report 2525, Nov. 1972

"AN/UYK-17 (XB-l)(V) Signal Processing Element Architecture," W. R. Smith, J. P. Ihnat, H. H. Smith,
N. M. Head, Jr., E. Freeman, Y. S. Wu, and B. Wald, NRL Report 7704, June 7, 1974

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7777
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

AN/UYK-17 (XB-1)(V) SIGNAL PROCESSING ELEMENT Interim report on a continuing
MICROPROGRAMMING SUPPORT SOFTWARE problem

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Tomlinson G. Rauscher, John D. Roberts, Jr., and
W. David Elliott

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problems B02-06, B02-10, and B02-1E
Washington, D.C. 20375 ProjectsWF21-241-601, YF21-241-019,

Washington, D.C. ~ ~ ~ ~ ~ ~ ~ ndZF1-2100
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy October 10, 1975
Naval Air Systems Command and Naval Electronics Systems Command 13. NUMBER OF PAGES
Washington, D.C. 20360 124

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of thin report)

Unclassified
I5a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and dentify by block number)

AADC Microprogrammed Control Unit SPE
All Applications Digital Computer Microprogramming
AMIL Signal processing
ANIMIL Signal Processing Arithmetic Unit
AN/UYK-17 Signal Processing Element Signal Processing Element
MCU SPAU

20. ABSTRACT (Continue on reverse aide if necessary and identify by block number)

The AN/UYK-17 Signal Processing Element (SPE) is being developed at the Naval Research
Laboratory to provide a high performance processing facility for radar, sonar, and communications
systems. The design of the microprogrammable SPE enables realization of efficient, flexible solu-
tions to problems that arise in digital signal processing tasks.

The SPE is intended to be compatible with the Navy All Applications Digital Computer (AADC)
now under development, and it is intended to be implemented as part of the AADC system. The
SPE can also be used as a stand-alone processor.

(Continued)

DD FORM 1473 EDITION OF NOV 65 IS OBSOLETEIdI /JAN 73
SIN 0102-014- 6601

i SECURITY CLASSIFICATION OF THIS PAGE ("hen Data Entered)

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

CONTENTS

INTRODUCTION 1

AN/UYK-17 Hardware System Overview 1
AN/UYK-17 Support Software System Overview 3

MICROPROGRAMMING THE MCU 3

AMIL 3
Referencing MCU Facilities 5
AMIL Subcommands 6
I/O Instructions 12
Pseudoinstructions 12
The AMIL Translator 14

MICROPROGRAMMING THE SPAU 15

ANIMIL 15
Referencing SPAU Facilities 20
Use of the Arithmetic Section 22
Use of the Address Generator Section 27
Use of the Sequence Unit 29
Use of the IOCU and Buffer Memories 31
Pseudoinstructions 32
ANIMIL Translate-Time Facilities 32
The ANIMIL Translator 33

AN INTERACTIVE SIMULATOR PACKAGE FOR THE
MCU AND SPAU 40

Controlling SPE Component Simulators 40
Command Language Overview 40
Command Language Statements 43
Set and Display Commands 44
File Manipulation Commands 48
Output Control Commands 49
Trace Point and Breakpoint Control Commands 50
File Input Command 52
Simulator Control Commands 52
Using the Simulators and Command Language

Interpreter 53
Error Messages 53
Summary of Commands 54
Examples 56

iii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

AN/UYK-17 (XB-1)(V) SIGNAL PROCESSING ELEMENT
MICROPROGRAMMING SUPPORT SOFTWARE

INTRODUCTION

The AN/UYK-17 Signal Processing Element (SPE) is being developed at the Naval
Research Laboratory (NRL) to provide a high-performance processing facility for radar,
sonar, and communications systems. A prototype version of the SPE, denoted (XB-1),
is under construction at NRL. The design of the microprogrammable SPE enables
realization of efficient, flexible solutions to problems that arise in digital signal process-
ing tasks.

The SPE is intended to be compatible with and implemented as part of the Navy
All Applications Digital Computer (AADC) system under development. The SPE can also
be used as a stand-alone processor.

The SPE (see Fig. 1) comprises six modular components that provide the functions
of system control, arithmetic processing, storage and its addressing, input/output (I/O)
control, and I/O units.

Two of these components, the Microprogrammed Control Unit (MCU) and the Signal
Processing Arithmetic Unit (SPAU), are microprogrammable. This report describes the
microprogramming support software developed at NRL to facilitate the development and
debugging of microprograms for the (XB-1) MCU and (XB-1) SPAU. This report assumes
familiarity with an earlier report on AN/UYK-17 SPE architecture [1].

AN/UYK-17 Hardware System Overview

The Microprogrammed Control Unit (MCU) is the SPE system controller. MCU
functions include data management, processing scheduling, I/O control, interrupt handling,
and applications routine processing. The MCU contains an arithmetic/logic unit, several
high-speed local store registers, priority interrupt handling facilities, and I/O logic. The
64-bit horizontal microinstructions, which reside in a 4096 word writable control store,
are executed at the system cycle rate of 150 ns.

The SPAU is the SPE system arithmetic processor and operates on arrays of data.
The SPAU was designed to perform operations such as Fourier transforms, recursive filter-
ing, and complex multiplication. Parallel multiply and arithmetic/logic units, high-speed

Note: Manuscript submitted May 31, 1974.

1

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

RAUSCHER, ROBERTS, AND ELLIOTT

are the following (see field 12): +1, -1, COMP, LEFT, RIGHT, and CIRC. A blank
must precede each of the last four unary operations (which indicate one's complement
and left, right, and circular shift by the value of the SAR register). The binary operators
(indicated by binary-op) are the following (see field 12): +, -, OR, AND, XOR, and
EQV. The last four operators are logical operators and must be surrounded by blanks in
the subcommand. All the binary operators except "-" are commutative, and the order
of the left and right operands is immaterial. Note that when binary operators are used,
the only valid combinations of left and right inputs are those listed in field 11. Note in
fields 4 and 5 of the control word that the BARA and BARB registers receive their in-
puts from the ALU/shifter and not from the Z register. Hence the subcommands

BARA = 0
BARB = 0

may be performed by doing a no-operation in the ALU and assigning the result, zero, to
BARA or BARB. In this case, the Z register remains unchanged and other registers may
be assigned its value with a subcommand of the form

destination = Z

Note that adder destinations may not conflict with other uses of a register. For example,
local store A (see field 6) can be set from channel A, from channel B, or from the Z
register. Some legal examples of ALU operations are the following:

LSB(3) = LSA(4) + LSB(4) $
LSA(1), SAR = BARA + 10 $ (note-two destinations)
ACSAR = LSB(12)$(+ 0 need not be included)
LSA(1) = LSA(1) OR LSB(7) $
Z = LSA(9) + 65535 $
LSB(5) = LSB(5) COMP $ (LSB(5) is one's complemented)
BARB = LSB(10) + COMP1 36 $ (36 is added to LSB(10))
LSA(3) = LSA(3) LEFT $ (LSA(3) is Left Shifted SAR bits)
LSA(1), LSB(2), BARA, BARB, ACSAR = LSA(5) EQV LSB(2) $
*many destinations
SAR, LSA(1) = BARA + 10 $

Some illegal examples of ALU operations follow:

LSA(7) = CTR + LSA(5) $ Illegal Left/Right combination
BARA = LSB(5) - LSA(3) $ only Left-Right
ACSAR = SAR + CTR $ Illegal Left/Right combination
LSB(3) = 537 RIGHT $ Lit is not a Left input
CTR = COMP LSA(5) $ Should be LSA(5) COMP

Address Adjust-In the latter part of each MCU cycle, the buffer address registers,
BARA and BARB, may be changed to properly address the buffers in the next cycle

8

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

IF MOST THEN JUMP TO ERROR $
IF NOT ZERO THEN CALL MULT $
IF NOT ADROV THEN SKIP $

Table 2
MCU Conditions*

Mnemonic Meaning

MOST The most significant bit of the result of the last ALU
operation is set

LEAST The least significant bit of the result of the last ALU
operation is set

ADROV The most significant bit of the ALU operands are the
same yet different from the most significant bit of
result

CTRZERO Counter is zero (after the test the counter is decremented)
ZERO The result of the last ALU operation was zero
FSU The defined FSU field (at the beginning of the cycle) is

zero
CARRY There was a carry out of the most significant bit during

the last ALU operation

*Conditions must be surrounded by blanks.

Interrupt Control Adjust-The MCU programmer can set or reset the two bits of the
interrupt status register (see field 10) that designate an inhibit interrupt flag and a soft-
ware interrupt flag. The subcommand

ISR = literal

indicates these actions. The low-order four bits of the literal are, from most to least
significant, "set software interrupt flag," "clear software interrupt flag," "set inhibit in-
terrupt flag," and "clear inhibit interrupt flag." A 1 in the appropriate bit position
specifies the listed action. The set and clear operations for each flag are mutually ex-
clusive. The following subcommand, for example, sets the software interrupt flag and
clears the inhibit interrupt flag:

ISR = 9

Field Select Control Adjust-Data from the FSDR, indicated by the key word FSU,
may be referenced as an ALU input, as a source for BARB, or as a condition. Because
the FSDR i 32 bits long, there is a Field Select Control Register (FSCR) that indicates
which bits are to be selected from the FSDR. The FSCR is a 10-bit register that indi-
cates the rightmost bit position in the FSDR from which to select bits and the number
of bits to select. See diagram below.

11

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

The equivalence pseudoinstruction permits mnemonic referencing of constants and
certain registers. The general form of the command is

EQU mnemonic = equ-factor

One or more blanks must follow the key word EQU. The mnemonic has the same form
as a label. The equ-factor may be one of the following:

1. An integer,

2. A hexadecimal number indicated by

HEX hexadecimal-integer

(a blank must follow the key word HEX),

3. A complemented integer indicated by

COMP1 integer

or

COMP2 integer

depending on whether one's or two's complement is desired (one or more blanks must
follow the key words COMP1 and COMP2),

4. A buffer address indicated by

(integer1 , integer 2)

where integer1 represents the buffer number and integer 2 represents the address of a
16-bit word, or

5. One of the registers BARA, BARB, LSA(subscript), or LSB(subscript).

In the first four cases, the number is converted to a 16-bit integer that generally repre-
sents a control store literal. When a mnemonic is later encountered in an AMIL pro-
gram, the value assigned to the mnemonic is substituted for it. Mnemonics for BARA
and BARB may not be used in memory operations. Once a mnemonic has been assigned,
its value cannot be changed. Some examples of use of the EQU instruction are as
follows:

EQU ADDR1 = (3,512) $
EQU TWO10 = 1024 $
EQU ABLE = BARA $
EQU BAKER = LSA(2) $
EQU CHARLIE = LSB(12) $

BARA = ADDR1 $
ABLE = BAKER + CHARLIE $
CTR = TWO10 $

13

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

SAME L.S. USED TWICE AS SOURCE OR DESTINATION
ILLEGAL LOCAL STORE SUBSCRIPT
MISSING) AFTER LOCAL STORE SUBSCRIPT
LOCAL STORE SUBSCRIPT *13* IS TOO LARGE
PANEL STARTS WITH ILLEGAL CHARACTER
MISSING (AFTER INPUT OR OUTPUT
BUFFER READA OR READB SPECIFIED TWICE
ILLEGAL DESTINATION FOR BUFFER READ
ILLEGAL COMBINATION OF BUFFER OUTPUTS
ILLEGAL ADDRESS SELECT FOR OUTPUT
MISSING , AFTER SOURCE FOR OUTPUT OR INPUT
ILLEGAL MODIFIER FOLLOWING INC
BARA USED TWICE AS A DESTINATION
BARB USED TWICE AS A DESTINATION
DUPLICATE AUXILLARY TRANSFER
MISSING = IN AUXILLARY TRANSFER
ILLEGAL SOURCE FOR AUXILLARY TRANSFER
LABEL LONGER THAN NINE CHARACTERS
UNKNOWN ERROR AT (OR AROUND) PHRASE
MISSING = IN ADDER OPERATION
ILLEGAL OPERAND IN ADDER OPERATION
ILLEGAL INPUT OPERAND COMBINATION FOR ADDER
UNKNOWN ADDER OPERATOR
ILLEGAL CONDITION
ILLEGAL FSCR WIDTH SPECIFICATION
ILLEGAL FSCR STARTING BIT NUMBER SPECIFICATION
ILLEGAL FSCR WIDTH AND STARTING BIT NUM. COMBO
FSCR CANNOT SHARE THE CURRENT LIT FIELD
ILLEGAL FSCR ALTERATION
ILLEGAL SOURCE FOR FSDR LOAD
ILLEGAL SOURCE FOR OUTPUT
ILLEGAL SOURCE FOR INPUT I/O INSTR.
ILLEGAL INTERRUPT STATUS REGISTER CHANGE INSTR.
ILLEGAL FORMAT FOR JUMP OR CALL SUCCESSOR
DUPLICATE USE OF FSU OR FSDR
ILLEGAL ORIGIN STATEMENT
ILLEGAL I/O STATEMENT
ILLEGAL EQUIVALENCE STATEMENT
BARA USED FOR READ & WRITE IN SAME CYCLE
BARB USED FOR READ & WRITE IN SAME CYCLE
SYMBOLIC LENGTH TOO LONG > 10)
OVER 40 LABELS (SYMBOLICS) START WTH

WARNING EOF ENCOUNTERED AFTER LNE #
LABEL *A9* HAS ALREADY BEEN USED
EXTERNAL LIST OVERFLOW - MORE THAN 200 ENTRIES
ENTRY POIN TABLE OVERFLOW - OVER 100 E.P.'S
DUPLICATE FSCR ALTERATION
DUPLICATE ISR ALTERATION
DUPLICATE ADDER OPERATION
INTEGER MORE THAN 6 DIGITS LONG

TWO DIFFERENT LITERALS SPECIFIED

INTEGER > 65535 OR < -32768
ILLEGAL CHARACTER INSIDE INTEGER

UNABLE TO RESOLVE THE FOLLOWING LABEL(S)
DUPLICATE LITERALS AT LINE NUMBER
MISSING) TO CLOSE INPUT OR OUTPUT STAT
GREATER THAN 9 IN SUBROUTINE BUILD
UNABLE TO LOCATE
ILLEGAL PLACEMENT OF * OR *

SOLUTION - LINE ENDED WITHOUT CLOSING

Fig. 5-Sample error messages for the AMIL

19

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

LABEL# LABEL# LABEL# S

LABEL#LABEL#LABEL#LABEL#LABEL#LABEL#SUBCOMMAND;SUBCOMMAND;SUBCOMMAND;SUB
COMMAND; SUBCOMMAND; SUBC OMMAND; SUBCOMMAND$

SU
SC OM

MANDS

LAB EL# SUBCO HERE'S A COMMENT IN THE MIDDLE OF A SUBCOMMAND MMAND;
SUBCOMMAND; SUBCOMMAND; S U B C 0 M M A N D; $

Fig. 6--Format for a sample ANIMIL microprogram (Continued)

The ANIMIL translator translates an ANIMIL microprogram into an object pro-
gram. Each microinstruction comprises 63 control fields. The names of these fields and
their meanings appear in Appendix B, which contains a summary chart that can be folded
out for ease of reference. The following subsections discuss referencing SPAU facilities;
subcommands that specify use of arithmetic, address generator, sequence unit, and I/O
control unit (IOCU) sections; pseudoinstructions; translator use; sample microprograms;
and error messages. A companion document describes the formal syntax and semantics
of ANIMIL [3].

Referencing SPAU Facilities

The SPAU registers are listed below.

Single Registers

ACSAR
BARA
BARB
CSAR
CTRI
CTRJ
CTRK
INCA

Array Registers
W
X
x1
X2
Y
Y1
Y2

INCB
INCR
P1
P2
P3
P4
RAR
R1

R2
R3
R4
R7
zi
Z2
Z3
Z4

left half of the X array
right half of the X array

left half of the Y array
right half of the Y array

Memory Registers
BUFA
BUFB
ROM

Note that the ACSAR and CSAR registers are 12 bits long. All other single and array registers are 16
bits long. Each buffer memory word is 32 bits long. The first 1025 ROM words are 32 bits long; addi-
tional ROM words are 64 bits long.

21

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

.510 X.2510

=- 0.100 0000 0000 00002 X 0.010 0000 0000 00002

= 00.00 1000 0000 0000 0000 0000 0000 00002

= 0.00 1000 0000 0000 0000 0000 0000 00002

= 0001 0000 0000 00002

After the leftmost bit
is dropped

After rounding and tak-
ing 16 bits, starting with
bit 30

= .1251o

The subcommand

P = BIT29;

indicates that the 16 bits starting with bit 29 after rounding will be loaded into the P
registers. This choice represents the product of a number whose assumed radix point
follows the bit after the sign bit and a fractional number; for example,

1.51 X *510

= 01.10 0000 0000 00002 X 0.100 0000 0000 00002

= 000.1 1000 0000 0000 0000 0000 0000 00002

= 00.1 1000 0000 0000 0000 0000 0000 00002

= 0.110 0000 0000 00002

After the leftmost bit
is dropped

After rounding and tak-
ing 16 bits, starting
with bit 29

= .7510

The subcommand

P = BIT27;

indicates that 16 bits starting with bit 27 after rounding will be loaded into the P regis-
ters. This choice represents the product of a number whose assumed radix point follows
the third bit after the sign bit and a fractional number; for example,

6 -51o X .12510

= 0110. 1000 0000 0000 X 0.001 0000 0000 00002

= 0000 0.110 1000 0000 0000 0000 0000 00002

= 0000.110 1000 0000 0000 0000 0000 00002 After the leftmost bit
is dropped

23

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

CTRI = W(10);
CTRK = LSH W(23);
CTRJ = LIT; ... LIT = 1024;

Counters may alternatively be decremented by 1 so that they can be tested (see field 16).
The DEC command followed by the letter of the counter to be decremented specifies
this action. The three possible subcommands to decrement counters are

DECI;
DECJ;
DECK;

Use of the Sequence Unit

There are several methods for choosing the control store address (see field 30) of the
next microinstruction. Some of these commands use labels, which are strings of 1 to 10
characters, the first of which must be alphabetic and the remainder of which must be
alphanumeric. A label names a microinstruction and prefixes it as follows:

label # microinstruction $

A microinstruction may have multiple labels. Microinstruction labels are converted to
numeric addresses of control store words wherein the microinstruction will reside. Refer-
ences to other microinstructions are made via labels that are converted to the appropriate
control store address and stored in the literal field of the control word. Table 3 contains
the subcommand forms that correspond to the alternative methods for selecting the next.
control store address (see field 30).

Table 3
Alternative Methods of Control Store Address Selection

Subcommand Form J Meaning Register Action

STEP; Add one to current CSAR<CSAR+1
address (default)

SKIP; Add two to current CSAR<CSAR+2
address

SAVE; Set ACSAR to one plus ACSAR-CSAR+1,CSAR<CSAR+1
contents of CSAR and
step

CALL label; Set ACSAR to one plus ACSAR+-CSAR+1,CSAR*-literal
contents of CSAR and
jump to literal

GO TO label; Jump to literal CSAR-literal
GO TO ACSAR; Jump to contents of CSARv-ACSAR

ACSAR
GO TO W(subscript) Jump to contents of CSAR+-W(subscript)

W(subscript)
GO TO R7; Jump to contents of R7 CSAR+-R7

29

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

Use of the IOCU and Buffer Memories

Data computed by a SPAU program may be written in 32-bit words into the buffer
memories (see fields 19 and 20) with a subcommand of the form

buffer = buffer-source;

where buffer must be BUFA or BUFB and is addressed by BARA or BARB, respectively.
A buffer may not be used as a destination of information in the same microinstruction in
which it is a source. Buffer-source may be R1R2, R1R3, R2R4, R3R4, X(subscript), or
Y(subscript). The sources may thus be considered pairs of 16-bit half-words. The contents
of the first are written into the 16 MSBs of the addressed buffer memory word; the con-
tents of the second are written into the 16 LSBs. Typical examples follow:

BUFA = R1R3;
BUFA = X(7);
BUFB = R2R4;
BUFB = Y(RAR);

If desired, buffer input may be shifted right one bit as it crosses the channel (see
field 17). The subcommand

LATCH;

shifts all future buffer memory input right one bit until the subcommand

UNLATCH;

is executed.

In ANIMIL programs, the 4 MSBs of the BARA and BARB registers are pointers to
buffer memories and the 12 LSBs are pointers to addresses within the buffer memories.
Buffers may be swapped (see field 17) by interchanging the high-order 4 bits of BARA
and BARB with the subcommand

SWAP;

To prevent alteration of these buffer memory pointers (see field 25) in a microinstruc-
tion wherein BARA or BARB are destinations, the subcommand

HOLD;

is used.

The subcommand

INTERRUPT;

which instructs the IOCU to send an interrupt to the MCU, signals the end of a SPAU
program (see field 27).

31

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

- INVALID

- INVALID

- INVALID

- INVALID

- INVALID

- COUNTER

- INVALID

- INVALID

- INVALID

- INVALID

- INVALID

SOURCE FOR Xl, X2, Y, OR Y2

X OR Y DESTINATION

SOURCE FOR X OR Y

SOURCE FOR LIT

COUNTER INPUT

IS BOTH DECREMENTED AND USED AS A DESTINATION

BUFFER SOURCE

MULTIPLIER BIT SELECTION

HOLD OPERATION

INTERRUPT OPERATION

GO TO ADDRESS

- DIFFERENT LABELS REFERENCED

- INVALID LABEL

- LABEL TABLE FULL

- INVALID CONDITION

- INVALID

- INVALID

- INVALID

- INVALID

- INVALID

- INVALID

- TOO MANY

- INVALID

- UNKNOWN

CLAUSE FOLLOWING CONDITION

CONTROL SEQUENCE SPECIFIED AFTER THEN

DECREMENT REGISTER SPECIFIED

ENT OR EXT INSTRUCTION

LIST OF LABELS IN ENT OR EXT INSTRUCT:

ORIG STATEMENT

I ORIGIN STATEMENTS

SOURCE OR DESTINATION IN ASSIGNMENT S'

INSTRUCTION TYPE

EON

PATEMENT

-H# ERROR - USE OF CONTROL FIELD - CONFLICTS WITH PREVIOUS USE

GROUP 2

#f ERROR - INPUT

FIRST

CHECK

ERROR - LABEL

#? ERROR - LABEL

FIRST

STATEMENT LENGTH EXCEEDS 1400

1400 CHARACTERS ARE USED

FOR UNMATCHED DOUBLE QUOTATION MARKS

WITH LENGTH 0 IS IGNORED

HAS MORE THAN 10 CHARACTERS

10 CHARACTERS ARE USED

Fig. 8-ANIMIL error messages (Continued)

41

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

RAUSCHER, ROBERTS, AND ELLIOTT

7. A superscript + sign means that the item may be repeated. Repetition is zero or
more times for elements and bracketed items and one or more times for items within
braces.

Set and Display Commands

Set Command-The format of the set command is

SET facilityname = data [,facilityname = data] +;

The names of the facilities comprise several groups: single registers, array registers,
memory registers, and control store.

The MCU single registers are

ACSAR
ADROV
BARA
BARB
BUSA
BUSB
CARRY
CSAR
CTR
CTROV
DLSA
DLSB
FSCR
FSDR
FSU
LEAST
LIT
MOST
SAR
SCSAR
SLSA
SLSB
Z
ZERO

DLSA(DLSB) is the LSA(LSB) element addressed
by the control store field DAAL(DBAL).

SLSA(SLSB) is the LSA(LSB) element addressed
by the control store field SAAL(SBAL).

The MCU array registers are

LSA (subscript [-subscript])
LSB (subscript [-subscript])

Subscripts for array registers may range from 0 to 15.

44

NRL REPORT 7777

The MCU memory registers are

BUF l (halfwordnumber [-halfwordnumber])

t3

Buffer references are to half-words (16 bits), not to full words (32 bits). Even-numbered
half-words, starting with zero, refer to the low-order 16 bits in consecutive words. The
half-words in each buffer are referenced 0 to 8191.

The MCU control storage register is

CS (address, fieldnumber [-fieldnumber])

The SPAU single registers are

ACSAR
BARA
BARB
CLOCK
CSAR
CTRI
CTRJ
CTRK
INCA
INCB
P1
P2
P3
P4
RAR
R1
R2
R3
R4
R7
Zi
Z2
Z3
Z4

The SPAU array registers are

COND (subscript)
W (subscript)
X1 (subscript)
X2 (subscript)
Y1 (subscript)
Y2 (subscript)

45

RAUSCHER, ROBERTS, AND ELLIOTT

The subscript for array registers other than the W array may range from 0 to 15. The W
array has a range of 0 to 31. Ranges of subscripts for array registers may be written

subscript - subscript

For example, X1(3-5). The elements of the COND array correspond to the 16 SPAU
conditions (see field 28 in Appendix B).

The SPAU memory registers are

BUF {l} (halfwordnumber[-halfwordnumber])

Buffer references are to half-words (16 bits), not to full words (32 bits). Even-numbered
half-words starting with zero refer to the high-order 16 bits in consecutive words. The
half-words in each buffer are referenced in 0 through 8191.

ROM (wordnumber[-wordnumber])

ROM word numbers range from 0 to 2047. The first 1025 ROM words contain two 16-
bit coefficients that are the sine and cosine of angles between 0 and 7rI2. These sine and
cosine coefficients may not be altered. When read into the Z registers, the first (sine)
coefficient is put into Zi and the second .(cosine) coefficient is put into Z2. The remain-
ing 1023 coefficient store words contain four 16-bit coefficients that may be changed under
microprogram control. When read into Z registers, the left-most (first) coefficient is put
in Z1, the second coefficient is put in Z2, and so forth. Unlike other facilities, each ref-
erence to ROM indicates either two values (if the address is less than or equal to 1024) or
four values (if the address is greater than 1024).

The SPAU control storage register is

CS (address, fieldnumber [-fieldnumber])

For each item in the facility name of the SET command, there must be a corresponding
item in the data list. Items in the data list are constants that may be specified directly in
the input line or indirectly from a file. The form for constants is

[±] [H] [.] integer

where H specifies a hexadecimal constant. The value of integer is limited by the preci-
sion of the facility. If the value specified is too large for the specified facility, an error
message is printed and the user is asked to input another value. All numbers will be
converted to 16-bit, two's complement binary representation. Decimal fractions will be
multiplied by 32768 to yield 16-bit integers; hexadecimal fractions will be multiplied by
800016. Some examples follow:

46

NRL REPORT 7777

Integer
Representation

100

-100

+ .5

- .5

+H100

-H100

+H.9

-H.8

Stored Value

006416

FF9C1 6

400016
C000 1 6

010016

FF0016

400016

C000 1 6

In addition, the repetition of a single number can be specified by

repetitionnumber (number)

For example,

Representation

#3(0)
#5(H.1)
#2(-.5)

Meaning

0,0,0
2048,2048,2048,2048,2048
49152,49152

For frequently referenced data, an external file can be used as the source of data items:

&filename

Data items will be read from the file with blanks or commas serving as delimiters. Extra
data items in a file are ignored. Providing insufficient items is an error. Some examples
of the SET command for the MCU are the following:

SET BARA = 100
S LSB(1) = 0
S LSA(0-13) = 0,1,2,#11(H.5);

Some examples for the SPAU include the following:

SET BARA = 0;
SET CTRI = 0, CTRJ = 1;
S R1 = .4, R2 = H.25, R3 = -H.25, R4 = HFFF;
S W (0-31) = 1,2, # 30(0);

"SETS W(0)=1, W(1)=2, W(2)=0, W(3)=0, ... W(31)=0"
S BUFO (0-8091) = #4095(H.C), 0,&BUFIN;

"SETS FIRST 4095 HALFWORDS IN"
"BUFFER 0 TO 24576, THE NEXT HALFWORD"
"TO ZERO, AND THE REMAINING HALFWORDS"
"ARE ASSIGNED FROM CONSECUTIVE ENTRIES OF FILE BUFIN"

47

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

Remove Trace Range and Remove Break Range Commands-The commands

REMOVE TRACE RANGE csaddr1 -csaddr 2 [,csaddr1 -csaddr 2]+;
REMOVE BREAK RANGE saddr1 -csaddr2 [,csaddr1 -csaddr 2 1 +1;

mean that control store addresses between each pair of csaddr1 and csaddr2 inclusive are
no longer trace points or breakpoints.

Clear Traces and Clear Breaks Commands-These commands,

CLEAR TRACES;
CLEAR BREAKS;

mean there are no longer any trace points or breakpoints, whichever is specified. The
command

CLEAR;

means there are no longer any trace points or breakpoints. Because trace point and break-
point information is stored with the control store, an object program must be loaded be-
fore trace and break commands may be executed. Additional commands facilitate speci-
fication of trace points and breakpoints, depending on the number of clock cycles in the
simulation.

Interval Command-The command

INTERVAL integer;

means that trace information should be printed every integer cycles where integer is an
unsigned decimal number. This command does not affect previously defined trace
points or breakpoints for which information will be printed as usual.

Single Step Mode Command-This command,

SINGLE STEP MODE;

effectively establishes a breakpoint at every step (i.e., every clock cycle) in the simula-
tion. Although this command has the effect of making every control store address a
breakpoint, it does not change previously specified breakpoints.

No Step Command-The command

NO STEP;

exists single step mode and reestablishes previous breakpoint definitions.

Some examples of trace point and breakpoint commands for the MCU are as follows:

51

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

Using the Simulators and Command Language Interpreter

The first versions of the MCU and SPAU simulators with the command language
interpreter have been developed on the KRONOS time-sharing system. To use the
simulators, sign on the system, create an object program by using the AMIL or ANIMIL
translator or the linkage editor and enter the command

EXECUTE

to which the system will respond

READY.

Enter the command

ATTACH, DMCU/UN = K5037WU

to indicate MCU simulation or the command

ATTACH, DSPAU/UN = K5037WU

to indicate SPAU simulation. Enter the command

RUN, I=DMCU

to initiate MCU simulation or

RUN, I=DSPAU

to initiate SPAU simulation. The command language interpreter will print

MCU COMMAND PROCESSOR
9

or

SPAU COMMAND PROCESSOR

depending on the machine being simulated. At this point the user may enter commands
to load the program to be simulated, initialize registers, and indicate trace points and
breakpoints. A GO command initiates simulation, which continues until a breakpoint or
the end of the microprogram is reached. At these points, the user may again enter com-
mands. The END command terminates the run.

Error Messages

In interpreting the input commands, the CLI may discover errors. Upon encounter-
ing an error, the CLI prints one or more messages that indicate the error, prints the com-
mand that it ignores because of the error, and continues processing with the next com-
mand. If a line with a GO command contains errors, the GO command is not executed
so that corrections can be made before initiating simulation. In addition, the simulators

53

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

File Commands

5. LOAD filename;

(BUFO)
BUF1 I

6. REPLACE filename BUF32 f
CS
ROM,

Output Control Commands

7. ADD facilityname [=format] [,facilityname[=format]] +;

8. DELETE entrynumber [,entrynumber] +;

Trace and Break Commands

9 .f TRACE

10. BREAK J
11. fTRACE1
12. BREAK

13.

14.

15.

16.

Csaddr [,csaddr]+;

RANGE csaddr1 - csaddr 2 [,csaddr 1 -csaddr 2] +;

TRACE]
REMOVE

LBREAK
Csaddr [,csaddr] +;

TRACE
REMOVE RANGE

BREAKJ
csaddr - saddr 2 [,csaddr -csaddr2 1+;

17. TRACES
CLEAR

18. BREAKS {
19. CLEAR;

20. INTERVAL integer;

21. SINGLE STEP MODE;

22. NO STEP;

Input Control Command

23. FILE INPUT filename;

55

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

Examples

Figure 11 illustrates use of the preprocessor with an AMIL program.

Figure 12 shows a sample run of the ANIMIL translator with the preprocessor option;
note the macros for subcommands, named MULT2, INC-BARA, MULTi, and ADD1-ADD3;
the assignment of the parameter BUFARA to a long string; and the included text.

Errors

Errors may be detected by the preprocessor when processing specified file names and
optional parameters or when preprocessing input text.

The error messages that may be printed during the processing of file names and op-
tional parameters are as follows:

ERROR - INVALID SOURCE FILE NAME
ERROR - INVALID OBJECT FILE NAME
ERROR - INVALID OPTIONAL PARAMETER
ERROR - INVALID SOURCE MARGIN PARAMETER
ERROR - INVALID LINELENGTH OPTION

After the processor prints an error message, it repeats its request for information

Figure 13 shows the error messages that may be printed by the preprocessor.
Messages are printed after the line on which the error occurred. Following each message
in the first group, the preprocessor prints

ERROR - INVALID PREPROCESSOR STATEMENT
SCAN RESUMED AFTER $ OR AT BEGINNING OF NEXT LINE

The preprocessor then ignores the statement in error up to the dollar sign or the end of
the line, whichever comes first. The messages in the second group are self-explanatory.

Proposed Preprocessor Extensions

Although the preprocessor statements discussed provide general equivalence and
macro facilities, additional facilities would be useful and would permit more flexibility.
Those ideas may be implemented in later versions. The ability to have integer preprocessor
variables and a general conditional statement of the form

& IF condition
& THEN & preprocessor-statement $
& ELSE & preprocessor-statement $

67

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

R ERROR

ERROR

WARNIS

ERROR -

0 WARNING

GROUP 1

- INVALID VARIABLE TO BE ACTIVATED OR DEACTIVATED

- INVALID FILE FOR INCLUSION

- INCLUDE STATEMENT WITHIN INCLUDED TEXT

- MISSING OR IMPROPERLY PLACED = IN ASSIGNMENT STATEMENT

- VARIABLE IN ASSIGNMENT STATEMENT HAS INVALID LENGTH

- MISSING OR IMPROPERLY PLACED IN ASSIGNMENT STATEMENT

- MISSING $ AFTER VALUE STRING IN ASSIGNMENT STATEMENT

- PREPROCESSOR SYMBOL TABLE FULL

GROUP 2

- VALUE STRING IN ASSIGNMENT STATEMENT HAS LENGTH GREATER

THAN 800, FIRST 800:CHARACTERS USED

- END OF FILE BEFORE END OF ASSIGNMENT STATEMENT

STATEMENT IGNORED

[G - CROSS REFERENCE TABLE OVERFLOW

SUBSEQUENT REFERENCES NOT RECORDED FOR VARIABLE

REPLACED VALUE STRING TOO LONG

1000 CHARACTERS USED

- QUOTE, $ OR AMPERSAND IGNORED IN VARIABLE

Fig. 13-Preprocessor error messages

A REGISTER CROSS-REFERENCE LIST
FACILITY FOR AMIL PROGRAMS

Description

A register cross-reference list facility can aid the microprogrammer in developing and
debugging microprograms because it tells him where machine registers are referenced.
The program to be described was developed for AMIL microprograms. The MCU registers
searched for in the cross-reference program are the following:

79

RAUSCHER, ROBERTS, AND ELLIOTT

ACSAR
BARA
BARB
BUF
CTR
FSCR
FSDR
FSU
ISR
LSA(O)
LSA(1)
LSA(2)
LSA(3)
LSA(4)
LSA(5)
LSA(6)
LSA(7)
LSA(8)
LSA(9)
LSA(10)
LSA(11)
LSA(12)
LSA(13)
LSA(14)
LSA(15)
LSA(BARA)
LSA(BARB)
LSB(O)
LSB(1)
LSB(2)
LSB(3)
LSB(4)
LSB(5)
LSB(6)
LSB(7)
LSB(8)
LSB(9)
LSB(10)
LSB(ll)
LSB(12)
LSB(13)
LSB(14)
LSB(15)
LSB(BARA)
LSB(BARB)
SAR
z

80

NRL REPORT 7777

In keeping with the line orientation of AMIL, references to MCU registers will be listed
by line number. Thus for each MCU register name explicitly (not symbolically) refer-
enced in AMIL statements, the cross-reference program will list the name of the register
and all the lines wherein AMIL statements explicitly reference it.

Because the ANIMIL translator provides a register cross-reference list (the REGISTER
LIST option), there is not a separate program to list registers referenced in ANIMIL
microprograms.

Using the Register Cross-Reference Program

The first version of the register cross-reference program has been developed on the
KRONOS time-sharing system. To use the program, sign on the system, create and save
an AMIL program file, and enter the command

EXECUTE

to which the system will respond

READY.

Enter the command

ATTACH, DMCUXRE/UN=K5037WU

to which the system will respond

READY.

Enter the command

RUN, I=DMCUXRE

to initiate program execution. The program will print a heading and then request infor-
mation by printing the following:

ENTER NAME OF AMIL PROGRAM FILE

Enter the name of the AMIL program file for which a register cross-reference list is
desired. The program will then ask

SOURCE PROGRAM LIST

Respond with 'YES' if a listing of the program is desired and 'NO' otherwise. If either
of these questions is answered incorrectly, the question will be repeated.

The source program will be listed, if it was requested, with each line preceded by a
line number corresponding to the number assigned by the AMIL translator. If the line

81

RAUSCHER, ROBERTS, AND ELLIOTT

contains more than 67 characters, the characters in columns 68 through 80 will be printed
on the following line. The program will then print the names of registers explicitly ref-
erenced in the AMIL program and the line numbers wherein they were referenced. When
local storage is addressed by a buffer address register, the cross-reference program will
list references to both local storage and the address register.

Figure 14 demonstrates use of the program with the AMIL example microprogram
illustrated in Fig. 4.

execute
READY.

attachdmcuxre/un=X5037wu
READY.

runi=dmcuxre

*** MCU CROSS REFERENCE VERSION 1.0 74109/25 16.02.45 ****

ENTER NAME OF AMIL PROGRAM FILE
? addcom

SOURCE PROGRAM LIST
? yes

SOURCE PROGRAM LIST

2
3
4
5
6 * MCU MICROPROGRAM EXAMPLE

7 * ADD COMPLEX NUMBERS
8
9 * ASSUME BSM 0 CONTAINS N PAIRS OF COMPLEX NUMBERS,

10 * EACH COMPLEX NUMBER IS STORED IN ONE 32 BIT BSM WORD.
11 * SUM SUCCESSIVE PAIRS OF NUMBERS AND STORE
12 * THEM IN BSM I. ASSUME SUMS DO NOT OVERFLOW.
13
14
15 * INITIALIZE
.16 BARA = 0 BUFFER ADDRESS REGISTER A POINTS TO THE
17 * INPUT DATA, BUFFER 0 LOCATION 0
18 BARB = 8192 BUFFER ADDRESS REGISTER B POINTS TO THE
19 * OUTPUT DATAs BUFFER 1 LOCATION 0
20 * CTR = N-1 , ASSUME CTR IS ONE LESS THAN THE NUMBER OF
21 * PAIRS OF COMPLEX NUMBERS TO BE SUMMED
22

Fig. 14-Use of the cross-reference program with the microprogram from Fig. 4

82

NRL REPORT 7777

23
24 * FILL UP PIPE
25 INPUT(BUFCBARA)sLSA(2))* INC BARA $
26 * LSA(2) = REAL PART OF FIRST NUMBER
27 * INCREMENT POINTER TO INPUT DATA
28
29 INPUT(BUFCBARA),LSAC3)), INC BARA $
30 * LSA(3 = IMAGINARY PART OF FIRST NUMBER
31 * INCREMENT POINTER TO INPUT DATA
32
33 lNPUTCBUF(BARA),LSB(2)), INC BARA, SKIP $
34 * LSBC2) = REAL PART OF SECOND NUMBER
35 * INCREMENT POINTER TO INPUT DATA
36 * SKIP NEXT INSTRUCTION SO DON'T OUTPUT GARBAGE
37
38 * LOOP TO SUM NUMBERS AND WRITE THEM OUT
39 .LOOP OUTrPUTCLSB(4),BUF(BARB)),
40 INPUTBUFBARA),LSB2)), INC BARA, INC BARB $
41 * WRITE IMAGINARY PART OF SUM INTO BUFFER
42 * LSB(2) = REAL PART OF SECOND NUMBER OF PAIR
43 * INCREMENT POINTER TO INPUT DATA
44 * INCREMENT POINTER TO OUTPUT DATA
45
46 INPUTCaJF(BARA)9LSBC3))x INC BARAv
47 LSAC4) = LSA(2)+LSB(2), IF CTRZERO JUMP TO OUT $
48 * LSB(3) = IMAGINARY PART OF SECOND NUMBER OF PAIR
49 * INCREMENT POINTER TO INPUT DATA
so * LSA(4) = SUM OF REAL PARTS OF 2 COMPLEX NUMBERS
51 X IF ALL DATA HAVE BEEN READ JUMP OUT OF LOOP
52 * OTHERWISE DECREMENT COUNTER BY 1
53
54 INPUT(UFCBARA),LSA(2)),
55 OUTPUT(LSAC4),BUF(ARB)), INC BARA, INC BARB
56 * LSA(2) = REAL PART OF FIRST NUMBER OF PAIR
57 * WRITE REAL PART OF SUM INTO BUFFER
58 * INCREMENT POINTER TO INPUT DATA
59 * INCREMENT POINTER TO OUTPUT DATA
60
61 LSB(4) = LSA(3)+LSB(3),
62 INPUT(EIFCBARA),LSA(3)), INC BARA, JUMP TO LOOP $
63 * LSB(4) = SUM OF IMAG PARTS OF 2 COMPLEX NUMBERS
64 * LSAC3) = IMAGINARY PART OF FIRST NUMBER OF PAIR
65 * INCREMENT POINTER TO INPUT DATA
66 * CONTINUE LOOPING
67

Fig. 14-Use of the cross-reference program with the microprogram from
Fig. 4 (Continued)

83

RAUSCHER, ROBERTS, AND ELLIOTT

* FLUSH PIPE
. OUT OUTJT CLSAC4)BUF(BARB)), INC BARB $

* WRITE REAL PART OF SUM INTO BUFFER
* INCREMENT POINTER TO OUTPUT DATA

LSB(4) = LSAC3)+LSB(3) $
* LSB(4) = SUM OF IMAG

OUrPUTCLSBC4),BUFCBARB))
* WRITE IMAGINARY PART

PARTS OF 2 COMPLEX NUMBERS

OF SUM INTO BUFFER

END S

84
85

REGISTER CROSS REFERENCE LIST
…_____________,______________

REFERENCES

16 25 25
55 62 62

29 29 33 33 40 40 46 46 54

18 39 40 55 55 69 69 76

25 29 33 39 40 46 54 55 62 69 76

47

25 47 54

29 61 62 73

47 55 69

33 40 47

46 61 73

39 61 73 76

END.

Fig. 14-Use of the cross-reference program with the microprogram from
Fig. 4 (Continued)

84

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

SYMBOL

SARA

BARB

BUF

CTR

LSAC2)

LSA(3)

LSA(4)

LSBC2)

LSB(3)

LSBC4)

NRL REPORT 7777

LINKAGE EDITOR FOR AMIL AND ANIMIL PROGRAMS

Description

A linkage editor combines microprograms that have been separately translated. As
discussed earlier, AMIL and ANIMIL microprograms reference other AMIL and ANIMIL
microprograms through microinstruction labels and sequencing subcommands and through
the entry and external pseudoinstructions. The linkage editor resolves external refer-
ences, handles code relocation requested by origin pseudoinstructions, and combines the
separately translated microprograms into a module amenable to simulation by the MCU
or SPAU simulator.

Using the Linkage Editor Program

The first version of the linkage editor has been developed on the KRONOS time-
sharing system. To use the linkage editor, sign on the system, create and translate sev-
eral AMIL or ANIMIL microprograms, and enter the command

EXECUTE

to which the system will respond

READY.

Enter the command

ATTACH, DLKED/UN= K5037WU

to which the system will respond

READY.

Enter the command

RUN, I=DLKED

to initiate execution of the linkage editor program. The program will pose the following
questions:

1. SPAU OR MCU-Answer SPAU or MCU depending on the machine for which
the microprograms to be linked were written.

2. ENTER INPUT FILE NAMES AND ADDRESSES-Enter the names of the files
that contain object modules to be linked. File names must be separated by commas, and
a dollar sign preceded by a blank must terminate the list. The list of file names may
extend over multiple input lines. A sample response is

P1OBJ, P20BJ, P30BJ $

85

RAUSCHER, ROBERTS, AND ELLIOTT

The object modules in the list are linked sequentially starting at absolute address 0. To
indicate that a module is to be linked to a specific absolute address, write an equal sign
and the address after the file name as illustrated in the following example:

P1OBJ, P20BJ = 2048, P30BJ $

In this case, the first module will start at address 0, the second at address 2048, and the
third will follow the second.

3. ENTER OBJECT FILE NAME-Enter the name of the file into which the linked
object program will be returned.

4. LISTING DESIRED-Answer YES or NO depending on whether a listing of the
linked object module is desired.

To illustrate the use of the linkage editor, two sample runs follow (Fig. 15). Also
included are the AMIL source programs to clarify linkage editor operation (Fig. 16).

ACKNOWLEDGMENTS

The authors wish to thank those who contributed to the development and testing
of the AN/UYK-17 microprogramming support software. In particular, thanks are due to
Edmund Freeman, Honey Sue Elovitz, Leonard E. Russo, and Harold H. Smith of the
Naval Research Laboratory and James L. Schilling of the Naval Undersea Center, San
Diego, California.

REFERENCES

1. W. R. Smith, J. P. Ihnat, H. H. Smith, N. M. Head, Jr., E. Freeman, Y. S. Wu, and
B. Wald, "AN/UYK-17 (XB-1) (V) Signal Processing Element Architecture," NRL Report
7704, June 7, 1974.

2. T. G. Rauscher and A. K. Agrawala, "On the Syntax and Semantics of Horizontal Micro-
programming Languages," in Proceedings of the ACM National Conference, Association
for Computing Machinery, New York, 1973.

3. T. G. Rauscher, "The Formal Syntax and Semantics of the ANIMIL Microprogramming
Language," NRL Report, in preparation.

86

RAUSCHER, ROBERTS, AND ELLIOTT

execute
READY.

at ach, d I1d•/un=X5037wu
1-UAD11.

run.1=dlked

SPAU OR MCU
? mcu
ENTER INPUT FILE NAMES AND ADDRESSES

? plxgp2x,p3x
? $
ENTER OUTPUT FILE NAME

? px
LISTING DES IRED

? yes

NEW ORIGIN TABLE
ORIG CNT

43
1047
1051
1076

0 2
4

2

NEW ENTRY POINTS
ENTRY NAME ADDRESS

FIN
MOD 1
X
MOD2

45
1047
1049
1051

Fig. 15-Two samples of linkage editor usage

87

NRL REPORT 7777

NEW OLD
ADDR ADDR LINE

FIELDSC 1-17)
1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 17

,___

0 0
1 1

43 43
44 44
145 45
46 46

1047 1000
1048 100 1
1049 1002
1050 1003

9 00
10 0 4
14 0 0
15 0 4
17 0 0
18 0 0

10 0 0
11 0 4
13 0 0
14 0 4

0 0 0 3 0 0 0 0 0 8 0 0 1 0 11
0 0 0 0 0 00 0 0 0 0 0 A3
0 0 0 3 0 0 0 0 0 8 0 0 2 0 22
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1049
0 0 0 3 0 0 0 0 0 8 0 0 3 0 33
0 0 0 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 3 0 0 0 0 0 8 0 0 5 0 55
0 0 0 0 0 0 0 0 0 0 0 0 0 0 45
0 0 0 3 0 0 0 0 0 8 0 0 6 0 66
a 0 0 0 0 0 0 0 0 0 0 0 0 0 1051

0 7 0 0
1 8 0 0
2 9 0 0
3 10 0 4

25 14 0 0
26 15 0 4

0 0 0 3 0 0 0
0 2 0 0 0 0 0
O 0 2 0 0 0 0
a0 0 000
0 0 0 3 0 0 0
00 0 0 0 0

0 0 8 0 0 7 0 77
0 0 0 0 0 ,0 0 0
0 a 0 0 0 0 0 0
0 0 0 0 0 0 0 1076
0 0 8 0 0 8 0 88
0 0 0 0 0 0 0 1 047

COLLAPSED ORIGIN TABLE
ORIG CNT

0 2
43

1047
1076

4
8
2

END

0.646 SECS.

RUN COMPLETE

Fig. 15-Two samples of linkage editor usage (Continued)

88

1051
1052
1053
1054
1076
1077

SS

RAUSCHER, ROBERTS, AND ELLIOTT

execute
READY.

attachdled/un=X5037wu
READY.

run, i= ldled

SPAU OR MCU
? mcu
ENTER INPUT FILE NAMES AND ADDRESSES

? pX,p2x=2O00,p3x $
ENTER OUTPUT FILE NAME

? py
LISTING DESIRED

? yes

NEW ORIGIN TABLE
ORIG CNT

0
43

3000
3004
3029

2
4
4
4
2

NEW ENTRY PO I NTS
ENTRY NAME ADDRESS

FIN
MODI
X
MOD2

45
3000
3002
3004

Fig. 15-Two samples of linkage editor
usage (Continued)

89

NRL REPORT 7777

NEW OLD
ADDR ADDR LINE

0 0 9 00 0
1 1 10 0 4 0

43 43 14 0 0 0
44 44 15 0 4 0
45 45 17 0 0 0
46 46 18 0 0 0

FIELDS C-17)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 3
0 0 0
0 0 3
0 0 0
0 0 3
0 0

O 0 08 0 1 0
000 0 000 000
000 0 0 8 02 0
000 0 000 000
0 a0 0 0 8 0 0 3 0
0 0 0 0 0 3 0 0 0 0

17

1
43
22

3002
33

0

3000 1000
3001 1001
3002 1002
3003 1003

10 0 0 0
11 0 4 0
13 0 0 0
14 0 4 0

0 0 3
0 0 0
0 0 3
0 0 0

0 0 0 0 0 8 0 0 5 0
000 0 000 000
0 0 0 0 0 8 0 0 6 0
00 0 0 00 0 a0 0

0 7 0 0 0
1 8 0 0 0
2 9 0 0 0
3 10 0 4 0

25 14 0 0 0
26 15 0 4 0

0 0 3
2 0 0
0 2 0
0 0

00 3
0 0 0

0 0 0 0 0 8 0 0 7 0
0 0 0 0 0 0 0 0 0 0
0 a a n o o o 0 0 0
0 0 0 0 0 a 0 0 0 0
0 0 a G[0 8- 0 0 8 a
0 0 0 0 0 0 0 0 0 0

COLLAPSED ORIGIN TABLE
ORIG CNT

0 2
43

3000
3029

4
8
2

0.623 SECS.

IUN COMPLETE

Fig. 15-Two samples of linkage editor usage (Continued)

90

3004
3005
3006
3007
3029
3030

55
45
66

30 64

77
0
0

3029

3000

END .

SS

RAUSCHER, ROBERTS, AND ELLIOTT

execute
READY.

attachdaml 1/un=kS037wu
EADY.

runti=damil

AMIL TRANSLATOR

SOURCE. AND OBJECT FILE NAMES

VERSION 1.0.256.73

? pl,plX
LISTINGS -SOURCE, OBJECTSTATSSYM TABCOND LIST KEY

? yestyespyesayeswyes

SOURCE LISTING

ADDR LINE

0
0

0 3

AMIL STATEMENT

I
* AMIL PROGRAM SEGMENT #1 TO DEM4ONSTRAXTE LINk EDIT FACILITIE

S

0 A
0
0
0

5
6
7

0 8
0
1
2
2

43
43
44
45
45
46
47
47

9
1 0
1 1
1 2
1 3

EXT X $

ENT FIN $

LSA(1) = 11 $
JUMP TO START $

ORIG 43 $

14 .START LSAC2) = 22 $
15 JUMP TO X $
16
1 7
1 8
19
2 0

.FIN LSAC3) 33
Z =0 S

END S

ORIGIN TABLE
ORIG CNT

0 2
43 4

Fig. 16-AMIL source programs for Fig. 15

91

NRL REPORT 7777

SYMBOL TABLE CROSS REFERENCE LIST
SYMBOL VALUE LINE NUMBER OF OCCURENCE

…__

FIN 45 7 17
START 43 10 14

EXTERNALS
NAME LINE NUMBER OF OCCURENCE

…__
X 5 15

ENTRY POINT TAE
NAME INSTR.NO.

FIN 5

OBJECT LISTING
FIELDS(1-17)

ADDR. LINE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
__

0 9 0 0 0 0 0 3 0 0 0 0 0 8 0 01 0 11
1 l0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43

43 14 0 Q 0 0 0 3 0 0 0 0 0 80 0 2 0 22
44 5 0400000 0 0 0 0 0 0 0 0 0 99999
45 17 0 0 0 0 0 3 0 0 0 0 0 8 0 0 3 0 33
46 18 Q 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0

NO COMPILATION ERRORS WERE ENCOUNTERED

FIELD UTILIZATION STATISTICS IN PER CENT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

…__ _ _ _ _ _ _ _ _ _ _ _ _ _ -

0 34 0 0 0 50 0 0 0 0 67 67 0 0 50 0 84

COMPILATION TIME = .74 SECONDS
END.

SS 1.111 SECS.

RLIN COMPLETE.
Fig. 16-AMIL source programs for Fig. 15 (Continued)

92

RAUSCHER, ROBERTS, AND ELLIOTT

execute
READY.

attachdamil/un=)5037wu
READY.

runvl=damil

AMIL TRANSLATOR VERSION 1.0.256.73

SOURCE AND OBJECT FILE NAMES
? p2,p2x
LISTINGS -SOURCE,OBJECTSTATSvSYM TABCOND LIST KEY
? yesyesyesyesyes

SOURCE LISTING

ADDR LINE

0
0

0
0
0
0
0
0

10 02
1 002
10 03
10 04
1004

AMIL STATEMENT

1
2 * AMIL PROGRAM SEGMENT #2 TO DEMONSTRATE LINK EDIT FACILITIE

S-
3
4
5
6
7
8
9

EXT FIN,MOD2 $

ENT MODlX $

ORIG 1000

10 .MODI LSAC5) = 55
11 JUMP TO FIN
12
13 .X LSk(6) = 66 $
14 JUMP TO MOD2 S
15
16 END $

Fig. 16-AMIL source programs for Fig. 15 (Continued)

93

NRL REPORT 7777

ORIGIN TABLE
ORIG CNT

1000 4

SYMBOL TABLE CROSS REFERENCE LIST
SYMBOL VALUE LINE NUMBER OF OCCURENCE

MODI 1000 6 10
X 1002 6 13

EXTERNALS
NAME LINE NUMBER OF OCCURENCE
___-__
FIN a 11
MOD2 X 14

ENTRY POINT TABLE
NAME INSTR.NO.

MODI I
X 3

OBJECT LISTING
FIELDSC1-17)

ADDR. LINE 1 2 3 A 5 6 7 8 9 10 11 12 13 14 15 16 17
1000_____10___0__0__0___0__0__3___0__0__0___0__0__8___0__0______0__55_

I 0 00 10 0 0 0 0 0 3 0 0 0 0 0 8 0 0 5 0 55
1001 11 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99999
1002 13 0 0 0 0 0 3 0 0 0 0 0 8 0 0 6 0 66
1003 14 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99999

NO COMPILATION ERRORS WERE ENCOUNTERED

FIELD UTILIZATION STATISTICS IN PER CENT
1 2 3 a 5 6 7 8 9 10 11 12 13 14 15 16 17

------------ ___
0 50 0 0 0 50 0 0 0 0 50 50 0 0 50 0 100

COMPILATION TIME .61 SECONDS
END.

Ss 0.921 SECS.

RUN COMPLETE.

Fig. 16-AMIL source programs for Fig. 15 (Continued)

94

RAUSCHER, ROBERTS, AND ELLIOTT

execute
READY.

attachdaml 1/un=)<5037wu
R¢ADY.

runt=damil

AMIL TRANSLATOR

SOURCE AND OBJECT FILE NAMES

VERSION 1.0.256.73

? p3,p3x
LISTINGS -SOURCEOBJECTqSTATSvSYM TABCOND LIST KEY

? yestqescqessyeslyes

SOURCE LISTING

ADDR LINE

0
0

0 3
0 4
0 5
0
0
1
2
3
4

AMIL STATEMENT

1
2 * AMIL PROGRAM SEGMENT 3 TO DEMONSTRATE LINK EDIT FACILITIE

S

EXT MODI $
ENT MOD2

.MOD2 LSA(7) = 77 $
INC BARA $
INC BAR $
JUMP TO NEXT $

6
7
8
9

1 0
1 1

4 12

25
25
26
27
27

1 3
114
15
16
1 7

ORIG 25 S NOTE
OGRAM SEGMENT

THAT ORIGIN IS RELATIVE TO START OF PR

.NEXT LSA(8) = 88 $
JUMP TO MODI $

END $

Fig. 16-AMIL source programs for Fig. 15 (Continued)

95

NRL REPORT 7777

ORIGIN TABLE
ORIG CNT

0
25

4
2

SYMBOL TA13LE CROSS REFERENCE LIST
SYMBOL VALUE LINE NUMBER OF OCCURENCE

MOD2 0 5 7
NEXT 25 10 14

EXTERNALS
NAME LINE NUMBER OF OCCURENCE

___-

MODI 4 15

ENTRY POINT TA BLE
NAME INSTR.NO.

MOD2 I

OBJECT LISTING
FIELDS (1-17)

ADDR. LINE 1 2 3 A 5 6 7 8 9 10 11 12 13 14 15. 16 17

0 7 0 0 0 0 0 3 0 0 0 0 0 8 0 0 7 0 77
1 8 0 0 0 2 0 0 0 0 0 0 0 n o o o o o
2 9 0 0 0 0 2 0 0 a o o o o o o o 0 a
3 10 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

25 14 0 0 0 0 0 3 0 0 0 0 0 8 0 0 8 O 88
26 15 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99999

NO COMPILATION ERORS WERE ENCOUNTERED

FIELD UTILIZATION STATISTICS IN PER CENT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0___3____0__17___17___3____0___0__0______34___34___0__0___3____0__67_
0 34 0 1 7 17 34 0 0 0 0 3xt 34 0 0 3xL 0 67

COMPILATION TIME =
END.

.68 SECONDS

1.053 SECS

RUN COMPLETE

Fig. 16-AMIL source programs for Fig. 15 (Continued)

96

SS

Appendix A
MCU CONTROL FIELDS

The definitions of
in Table Al.

the individual MCU control fields, listed below, are summarized

Field Width

4
3
3
2
2
2
2
3
1
1
4
4
4
4
4
4

16

Field

Condition
Next Address
Auxiliary Transfer
BARA Source
BARB Source
LSA Source
LSB Source
Buffer Memory Write Operation
FSCR Control
JSR Control
Adder Inputs
Adder Operation
LSA Read Address
LSA Write Address
LSB Read Address
LSB Write Address
Literal

97

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

Appendix B
SPAU CONTROL FIELDS

The definitions of the individual SPAU control fields, listed below, are summarized
in Table B1 and detailed in the text that follows.

Summary of Control Word Fields

Field Width

5
4
4
4
5

16
3
2
3
3
3
3
3
1
2
2
2
3
3
3
2
2
2
2
1
2
1
4
1
3
2
2
2
2

Field

X Read Address
X Write Address
Y Read Address
Y Write Address
W Address
Literal
W Source
Z Register Source
X1 Source
X2 Source
Y1 Source
Y2 Source
Literal Destination
CFS Write
W Store Shift Control
Counter Decrement
Channel Control
Counter Input
Channel A Source
Channel B Source
Adder 5 Destination
Adder 6 Destination
Adder 7 Destination
Local Store Remote Addressing
Buffer Pointer Hold
Multiplier Outputs
I/O Interrupt
Condition
Condition Mode
Control Sequence
Adder 1 Operation
Adder 2 Operation
Adder 3 Operation
Adder 4 Operation

101

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

RAUSCHER, ROBERTS, AND ELLIOTT

Field Width

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Field

Adder 5 Operation
Adder 6 Operation
Adder 7 Operation
Rl Source
R2 Source
R3 Source
R4 Source
Al Left Source
Al Right Source
A2 Left Source
A2 Right Source
A3 Left Source
A3 Right Source
A4 Left Source
A4 Right Source
A5 Left Source
A5 Right Source
A6 Left Source
A6 Right Source
A7 Left Source
A7 Right Source
Ml Left Source
Ml Right Source
M2 Left Source
M2 Right Source
M3 Left Source
M3 Right Source
M4 Left Source
M4 Right Source

CONTROL FIELD DEFINITIONS

Field 1. The X Read Address field specifies the location in the Xl or X2 store that is to
be a data source, unless code point 1 of field 24 is specified. Code points 16 to 31 are
unused.

Code Point

0

15

Store Address

0

15

102

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

,LUIJRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

The SPE is a collection of several interconnected functional components. Two of these
components, the Microprogrammed Control Unit (MCU) and the Signal Processing Arithmetic
Unit (SPAU), are microprogrammable. This report describes the microprogramming support
software developed at NRL to facilitate the development and debugging of microprograms for
the Model XB-1 MCU and SPAU.

Microprogramming languages, AMIL for the MCU and ANIMIL for the SPAU, have been
defined to facilitate microprogram creation. Translators have been developed for each language
that convert the source languages to microcode for the MCU and SPAU. Microcode thus
produced can be loaded into the control store of the associated machine.

In addition, simulators for the MCU and SPAU have been implemented to aid microprogram
debugging and hardware testing. These simulators accept microcode produced by the translators
and provide the user with convenient interactive control of the simulated machine. Both the
MCU and SPAU simulators use the same user command language to control simulator execution
and the display and modification of the simulated processor's registers.

Two ancillary programs have been written to aid the user in writing microprograms. A pre-
processor provides translate-time macro facilities for both AMIL and ANIMIL, and a linkage
editor allows programs to be written in modules and combined after translation.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- __ _

ii

NRL REPORT 7777

Field 2. The X Write Address field specifies the location in the XI or X2 store
that is to be a data destination, unless code point 1 of field 24 is specified.

Code Point

0

15

Store Address

0

15

Field 3. The Y Read Address field specifies the location in the Y1 or Y2 store
that is to be a data source, unless code point 2 of field 24 is specified.

Code Point

0

15

Store Address

0

15

Field 4. The Y Write Address field specifies the location in the Y1 or Y2 store
that is to be a data destination, unless code point 2 of field 24 is specified.

Code Point

0

15

Store Address

0

15

Field 5. The W Address field specifies the location in the W store that is to be a
data source and/or destination.

Code Point

0

31

Store Address

0

31

Field 6. The Literal field defines a 16-bit value that may be used as a source of
data and/or addresses to various portions of the SPAU arithmetic section and address
generator.

105

RAUSCHER, ROBERTS, AND ELLIOTT

Field 7. The W Source field specifies the data source for the W store.

Code Point

0
1
2
3
4
5
6
7

Field 8. The Z-Register Source field
(Zi, Z2, Z3, and Z4).

Code Point

0
1
2
3

Source

None
xi
X2
CTRJ
CTRK
A5
A6
A7

specifies the data source for the Z-registers

Source

None
CFS
Load Zi and Z2 with Xl and X2
Load Z3 and Z4 with Yl and Y2

Field 9. The Xl Source field specifies the data source for the Xl half of the X
store.

Source

None or Literal (see Field 13)
Al
A2
A3
A4
Upper half of Channel A (MSB)
Upper half of Channel B (MSB)
W

Field 10. The X2 Source field specifies the data source for the X2 half of the X
store.

Source

None or Literal (see Field 13)
Al
A2
A3
A4
Lower half of Channel A (LSB)
Lower half of Channel B (LSB)
W

106

Code Point

0
1
2
3
4
5
6
7

Code Point

0
1
2
3
4
5
6
7

NRL REPORT 7777

Field 11. The Y1 Source field specifies the data source for the Y1 half of the Y
store.

Source

None or Literal (see Field 13)
Al
A2
A3
A4
Upper half of Channel A (MSB)
Upper half of Channel B (MSB)
W

Field 12. The Y2 Source field specifies the data source for the Y2 half of the Y
store.

Source

None or Literal (see Field 13)
Al
A2
A3
A4
Lower half of Channel A (LSB)
Lower half of Channel B (LSB)
W

Field 13. The Literal Destination field
literal field of the command word.

Code Point

0
1
2
3
4
5
6
7

specifies the destination of the value in the

Destination

None
xi
X2
Y1
Y2
Both R1 and R2
Both R3 and R4
ACSAR

Field 14. The CFS Write field controls the CFS write operation. The data source
is registers Zi, Z2, Z3, and Z4; data transfer simultaneously into the four 16-bit fields
of the 64-bit CFS

Code Point

0
1

Operation

None (no write)
Zl, Z2, Z3, Z4 -+ CFS

107

Code Point

0
1
2
3
4
5
6
7

Code Point

0
1
2
3
4
5
6
7

RAUSCHER, ROBERTS, AND ELLIOTT

Field 15. The W Store Shift Control field specifies a shift to be applied to data
being read out of the W store.

Code Point Amount of Shift

0 None
1 Right one bit
2 Left one bit
3 Unused

Field 16. The Counter Decrement Control field specifies a counter decrement of 1.

Code Point Counter Decrement

0 None
1 CTRI
2 CTRJ
3 CTRK

Field 17. The Channel Control field specifies a change in Channel A and B data
line connections.

Code Point Operation

0 None (no change)
1 Connect A and B for 1-bit right shift

on input data
2 Resume normal, unshifted connection
3 Exchange A and B buffer pointers

Field 18. The Counter Set field specifies a counter register write operation.

Code Point Operation

0 None
1 W -CTRI
2 W eCTRJ

3 W CTRK
4 Literal CTRI
5 Literal CTRJ
6 Literal CTRK
7 Unused

108

NRL REPORT 7777

Field 19. The Channel A Source field specifies the sources for a 32-bit data output
transfer over Channel A.

Code Point

0
1
2
3
4
5
6
7

Source

None (no operation)
RI and R2
Ri and R3
R2 and R4
R3 and R4
x
y
Unused

Field 20. The Channel B Source field specifies the sources for a 32-bit data output
transfer over Channel B.

Code Point

0
1
2
3
4
5
6
7

Field 21. The Adder 5 Destination field
the Adder 5 operation.

Code Point

0
1
2
3

Field 22. The Adder 6 Destination field
the Adder 6 operation.

Code Point

0
1
2
3

Source

None (no operation)
RI and R2
RI and R3
R2 and R4
R3 and R4
x
y
Unused

specifies the destination of the results of

Destination

None
BARA
INCA
BARA and INCA

specifies the destination of the results of

Destination

None
BARB
INCB
BARB and INCB

109

RAUSCHER, ROBERTS, AND ELLIOTT

Field 23. The Adder 7 Destination field specifies the destination of the results of
the Adder 7 operation.

Code Point Destination

0 None
1 RAR
2 INCR
3 R7

Field 24. The Local Store Remote Address (LSRA) field specifies the right-most
four or five bits of the RAR as the address source for reads and writes of stores X, Y,
or W.

Code Point Operation

0 None (address from Literal address fields)
1 X(RAR)
2 Y(RAR)
3 W(RAR)

Field 25. The Buffer Pointer Hold field specifies that, during a write into BARA
and/or BARB, the higher four bits of both registers shall remain unchanged.

Code Point Definition

o Full BARA, BARB write
1 Hold high bits of BARA, BARB

Field 26. The Multiplier Outputs field specifies the 16 bits to be selected as the
output products of all four multipliers.

Code Point Product Output

0 Bits 30 to 15 (most significant)
1 Bits 29 to 14
2 Bits 27 to 12
3 Bits 15 to 0 (least significant)

Field 27. The I/O Interrupt field specifies activation of the SPAU interrupt
condition.

Code Point Definition

0 No operation
1 Raise the I/O interrupt line and halt

110

NRL REPORT 7777

Field 28. The Condition field specifies one of 16 conditions to be used as a basis
for determining the next control store address sequence.

Code Point Condition

0 Unconditional
1 CTRI zero
2 CTRJ zero
3 CTRK zero
4 AS adder overflow
5 AS adder magnitude limit
6 Adder 1 MSB
7 Adder 2 MSB
8 Adder 3 MSB
9 Adder 4 MSB

10 Adder 1 zero
11 Adder 2 zero
12 Adder 3 zero
13 Adder 4 zero
14 R7 MSB
15 R7 zero

The AS adder overflow condition is true when any of the AS adders overflows in two's
complement arithmetic (the two adder inputs have the same sign and the adder output
has the opposite sign). The AS adder magnitude limit condition is true when any one of
the AS adder outputs is greater than or equal to 1/2 or is less than -1/2 in two's com-
plement fractional representation (the two high-order bits of any AS adder output have
opposite values).

Field 29. The Condition Mode field specifies a true or false test on the condition
specified in the Condition field.

Code Point Definition

0 True
1 False

Field 30. The Control Sequence field specifies the next control store address
sequence.

Code Point Operation

0 STEP
1 SKIP
2 SAVE
3 CALL
4 JUMP TO LITERAL value

as an address
5 JUMP TO ACSAR
6 JUMP TO W
7 JUMP TO R7

111

RAUSCHER, ROBERTS, AND ELLIOTT

Field 31. The Adder 1 Operation
performed by Adder 1.

Code Point

0
1
2
3

Field 32. The Adder 2 Operation
performed by Adder 2.

Code Point

0
1
2
3

field specifies the arithmetic or logical operation

Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

field specifies the arithmetic or logical operation

Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

Field 33. The Adder 3 Operation field specifies the arithmetic or logical operation
performed by Adder 3.

Code Point

0
1
2
3

Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

Field 34. The Adder 4 Operation field specifies the arithmetic or logical operation
performed by Adder 4.

Code Point

0
1
2
3

Field 35. The Adder 5 Operation
performed by Adder 5

Code Point

0
1
2
3

Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

field specifies the arithmetic or logical operation

Operation

Left input + right input + 0
Left input + right input + 1
Left input - right input + 0
0 + right input

112

NRL REPORT 7777

Field 36. The Adder 6 Operation field specifies the arithmetic or logical operation
performed by Adder 6.

Code Point

0
1
2
3

Field 37. The Adder 7 Operation
performed by Adder 7.

Code Point

0
1
2
3

Operation

Left input + right input + 0
Left input + right input + 1
Left input - right input + 0
0 + right input

field specifies the arithmetic or logical operation

Operation

Left input + right input + 0
Left input + right input + 1
Left input - right input + 0
Left input + 0

Field 38. The RI Source field specifies the data source for R1.

Source

None or Literal
Al
A2
Ml

Field 39. The R2 Source field specifies the data source for R2.

Source

None or Literal
Al
A2
M2

Field 40. The R3 Source field specifies the data source for R3.

Source

None or Literal
A3
A4
M3

113

Code Point

0
1
2
3

Code Point

0
1
2
3

Code Point

0
1
2
3

RAUSCHER, ROBERTS, AND ELLIOTT

Field 41. The R4 Source field specifies the data source for R4.

Code Point

0
1
2
3

Source

None or Literal
A3
A4
M4

Field 42. The Al Left Source field specifies the source for the left input of Adder 1.

Code Point

0
1
2
3

Source

P1
xi
y1
Rl

Field 43. The Al Right Source field specifies the source for the right input of
Adder 1.

Code Point Source

0 P2
1 Yl
2 Ri
3 Unused

Field 44. The A2 Left Source field specifies the source for the left input of
Adder 2.

Code Point Source

0 Y1
1 X2
2 Y2
3 R2

Field 45. The A2 Right Source field specifies the source for the right input of
Adder 2.

Code Point

0
1
2
3

Source

Al
P1
P2
Y2

114

Add(

AddE

Add

Add(

NRL REPORT 7777

Field 46. The A3 Left Source field specifies the source for the left input of
er 3.

Code Point Source

0 P3
1 Y1
2 Y2
3 R3

Field 47. The A3 Right Source field specifies the source for the right input of
)r 3.

Code Point Source

0 P4
1 R3
2 Y2
3 X2

Field 48. The A4 Left Source field specifies the source for the left input of
er 4.

Code Point Source

0 Y2
1 Y1
2 R4
3 Unused

Field 49. The A4 Right Source field specifies the source for the right input of
)r 4.

Code Point Source

0 A3
1 xi
2 P3
3 P4

Field 50. The A5 Left Source field specifies the
5. Code points 2 and 3 are unused.

Code Point

0
1

source for the left input of Adder

Source

BARA
Literal

115

RAUSCHER, ROBERTS, AND ELLIOTT

Field 51. The A5 Right Source field specifies the source for the right input of
Adder 5. Code points 2 and 3 are unused.

Code Point Source

0 INCA
1 w

Field 52. The A6 Left Source field specifies the source for the left input of
Adder 6. Code points 2 and 3 are unused.

Code Point Source

0 BARB
1 Literal

Field 53. The A6 Right Source field specifies the source for the right input of
Adder 6. Code points 2 and 3 are unused.

Code Point

0
1

Source

INCB
w

Field 54. The A7 Left Source field specifies the source for the left input of
Adder 7. Code points 2 and 3 are unused.

Code Point

0
1

Source

RAR
Literal

Field 55. The A7 Right Source field specifies the source for the right input of
Adder 7. Code points 2 and 3 are unused.

Code Point Source

o INCR
1 w

Field 56. The MI Left Source field specifies the source for the left input of Multi-

1.

Code Point Source

0 X2
1 xi
2 Y1
3 Y2

116

plier

NRL REPORT 7777

Field 57.
Multiplier 1.

The Ml Right Source field specifies the source for the right input of

Code Point

0
1
2
3

Source

zi
x1
Y1
Rl

Field 58. The M2 Left Source field specifies the source for the left input of Multi-
plier 2.

Code Point

0
1
2
3

Source

xi
X2
Y2
Y1

Field 59. The M2
Multiplier 2.

Right Source field specifies the source for the right input of

Code Point

0
1
2
3

Source

Z2
Y2
X2
R2

Field 60. The M3 Left Source field specifies the source for the left input of Multi-
plier 3.

Code Point

0
1
2
3

Source

X2
x1
Y1
Y2

Field 61. The M3
Multiplier 3.

Right Source field specifies the source for the right input of

Code Point

0
1
2
3

Source

Z2
Z3
Y1
R3

117

RAUSCHER, ROBERTS, AND ELLIOTT

Field 62. The M4 Left Source field specifies the source for the left input of Multi-
plier 4.

Code Point

0
1
2
3

Source

xi
X2
Y2
Y1

Field 63. The M4
Multiplier 4.

Right Source field specifies the source for the right input of

Code Point

0
1
2
3

Source

zi
Z4
Y2
R4

The data from this appendix are compiled in foldout form in Table B1.

118

Appendix C
KRONOS TIME-SHARING SYSTEM

Signing On

1. Put the terminal in half duplex mode.

2. Select the desired speed: 10 characters per second (CPS) or 30 CPS.

3. Dial the computer: (301) 340-2400 for 10 CPS; (301) 340-2440 for 30 CPS.

4. When the computer responds with a high-pitched beep, perform the appropriate
coupling action (e.g., put the phone receiver in the acoustic coupler).

5. The computer should print

yy/mm/dd. hh.mm.ss.
EASTERN CLUSTER CTR KRONOS 2.0.8 SYS B
USER NUMBER:

where yy/mm/dd is the date and hh.mm.ss is the time of day. Type your user number,
a comma, and your password followed by a carriage return (CR).

6. The computer should then print

TERMINAL: number
RECOVER/SYSTEM:

which indicates that the sign-on procedure is complete, and you may proceed with your
work.

CREATING A NEW FILE
(FOR EXAMPLE, AN AMIL OR ANIMIL PROGRAM)

1. Enter

NEW, filename CR

where filename is the name of the file being created. The computer should respond

READY.

119

RAUSCHER, ROBERTS, AND ELLIOTT

2. Simultaneously press the CONTROL and B keys. The computer should respond

TEXT MODE - EXIT BY CTRL C

3. Enter the information the file is to contain, one line at a time.

4. Simultaneously press the CONTROL and C keys. The computer should respond

EXIT TEXT MODE.

5. Enter

PACK CR

to put the file in the proper internal format. The computer should respond with

READY.

6. To save this file for later use enter

with

with

SAVE CR

to which the computer should respond

REAny.

SIGNING OFF

1. Enter

BYE CR.

2. The computer should print

account number

SS

LOG OFF. hh.mm.ss

sss.sss SEC $ cost

and break the phone connection.

OTHER PROCEDURES

1. To use the programs described in this report, follow the directions in the separate
sections.

2. To edit (change) a file (e.g., if an AMIL or ANIMIL program had errors), see the
KRONOS Text Editor Reference Manual, Control Data Corporation Publication Number
59150700.

3. For additional information, see the KRONOS Time Sharing User's Reference
Manual, Control Data Corporation Publication Number 59151300.

120

